SUGGESTED SOLUTION TO HOMEWORK 2

JUNHAO ZHANG

Problem 1. Prove that for every x in a normed space X, the following identity holds:

$$
\|x\|=\sup \left\{\frac{|f(x)|}{\|f\|}: f \in X^{*}, \quad f \neq 0\right\}
$$

Proof. Fix an arbitrary $x_{0} \in X$. On the one hand, denote

$$
\alpha=\sup \left\{\frac{\left|f\left(x_{0}\right)\right|}{\|f\|}: f \in X^{*}, \quad f \neq 0\right\} .
$$

Since for arbitrary $f \in X^{*}$,

$$
\left|f\left(x_{0}\right)\right| \leq\|f\| \cdot\left\|x_{0}\right\|,
$$

therefore

$$
\alpha \leq\left\|x_{0}\right\| .
$$

On the other hand, define \tilde{f}_{0} on $E=\left\{\alpha x_{0}: \alpha \in \mathbb{R}\right\}$ by

$$
\tilde{f}_{0}(y)=\alpha\left\|x_{0}\right\|, \quad \forall y=\alpha x_{0} \in E .
$$

Then \tilde{f}_{0} is a linear functional on E. Moreover,

$$
\left\|\tilde{f}_{0}(y)\right\| \leq\|y\|
$$

therefore by Hahn-Banach theorem, there exists a linear functional f_{0} on X such that

$$
\left.f_{0}\right|_{E}=\tilde{f}_{0},
$$

and

$$
\left|f_{0}(x)\right| \leq\|x\|, \quad \forall x \in X
$$

Then

$$
f_{0}\left(x_{0}\right)=\left\|x_{0}\right\|, \quad\left\|f_{0}\right\| \leq 1
$$

which implies

$$
\left\|x_{0}\right\| \leq \alpha
$$

Problem 2. For $0<p<1$, let X be the vector space of all step functions on the interval $[0,1]$ with the function d defined by

$$
d(x, y)=\int_{0}^{1}|x(t)-y(t)|^{p} d t, \quad \text { for all } x, y \in X
$$

Show that (X, d) is a metric space.

Proof. For arbitrary step functions x on $[0,1]$, we assume there exists $n \in \mathbb{N}$ such that

$$
x(t)=\sum_{i=1}^{n} x_{i} \mathbb{1}_{I_{i}}(t)
$$

where $x_{i}, i=1, \cdots, n$, are constants, $I_{i}, i=1, \cdots, n$, are mutually disjoint intervals between $[0,1]$ with $\bigcup_{i=1}^{n} I_{i}=[0,1], \mathbb{1}()_{I}(t)$ is the indicator function of interval $I \subset$ $[0,1]$,

$$
\mathbb{1}_{I}(t)= \begin{cases}1, & t \in I \\ 0, & t \notin I\end{cases}
$$

Therefore it is obvious that X is a vector space. In the following, we prove that $d(\cdot, \cdot)$ is positive definite, symmetric and satisfies the triangle inequality.

Let us prove $d(\cdot, \cdot)$ is positive definite. It is obvious that $d(\cdot, \cdot)$ is positive. Suppose $d(x, y)=0$, then

$$
\begin{aligned}
\int_{0}^{1}|x(t)-y(t)|^{p} d t & =\int_{0}^{1}\left|\sum_{\alpha=1}^{n} x_{\alpha} \mathbb{1}_{I_{\alpha}}(t)-\sum_{\beta=1}^{m} y_{\beta} \mathbb{1}_{J_{\beta}}(t)\right|^{p} d t \\
& =\int_{0}^{1}\left|\sum_{\gamma=1}^{l} z_{\gamma} \mathbb{1}_{k_{\gamma}}(t)\right|^{p} d t \\
& =\int_{0}^{1} \sum_{\gamma=1}^{l}\left|z_{\gamma}\right|^{p} \mathbb{1}_{K_{\gamma}}(t) d t
\end{aligned}
$$

where $K_{\gamma}, \gamma=1, \cdots, l$ are intervals which are obtained by finitely union, intersection and complementation of $I_{\alpha}, \alpha=1, \cdots, n$ and $J_{\beta}, \beta=1, \cdots, m, z_{\alpha}$ is the difference between x and y on K_{α}, therefore for each α,

$$
z_{\alpha}=0
$$

which implies $x=y$.
We claim that $d(\cdot, \cdot)$ is symmetric. Indeed, for arbitrary step functions x and y,

$$
d(x, y)=\int_{0}^{1}|x(t)-y(t)|^{p} d t=\int_{0}^{1}|y(t)-x(t)|^{p} d t=d(y, x)
$$

We prove that for arbitrary step functions x, y and $z, d(x, y)+d(y, z) \geq d(x, z)$. Since $0<p<1$, then $p-1<0$, therefore

$$
\begin{aligned}
|x(t)-z(t)|^{p} \leq & (|x(t)-y(t)|+|y(t)-z(t)|)^{p} \\
& \leq|x(t)-y(t)|(|x(t)-y(t)|+|y(t)-z(t)|)^{p-1} \\
& +|y(t)-z(t)|(|x(t)-y(t)|+|y(t)-z(t)|)^{p-1} \\
\leq & |x(t)-y(t)|^{p}+|y(t)-z(t)|^{p},
\end{aligned}
$$

which implies that

$$
\int_{0}^{1}|x(t)-y(t)|^{p} d t+\int_{0}^{1}|y(t)-z(t)|^{p} d t \geq \int_{0}^{1}|x(t)-z(t)|^{p} d t .
$$

Problem 3. Show that $p(x)=\lim \sup x_{n}$, where $x \in \ell_{\infty}, x(n) \in \mathbb{R}$, defines a sublinear functional on ℓ_{∞}.

Proof. It is obvious that $p(x)$ is positive homogeneous. We claim that $p(x)$ is also subadditive. Indeed, for arbitrary $x, y \in \ell_{\infty}$, we have $x+y \in \ell_{\infty}$. Since

$$
\sup _{m \geq n}(x+y)(m) \leq \sup _{m \geq n} x(m)+\sup _{m \geq n} y(m),
$$

by taking n goes to infinity,

$$
p(x+y) \leq p(x)+p(m)
$$

